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A GRAPHICAL METHOD OF DETERMINING PRESSURE DISTRIBUTION IN
TWO-DIMENSIONAL FLOW

By Rosert T. Jonms and Doris Comex

SUMMARY

By a generalization of the Joukowski method, a pro-
cedure is developed for effecting localized modifications of
airfoil shapes and for determining graphically the resultant
changes in the pressure distribution. The application of
the procedure to the determination of the pressure distri-
bution over airfoils of original design is demonstrated.
Formulas for the lift, the moment, and the aerodynamic
center are also given.

INTRODUCTION

It is possible, by a simple geometric construction,
to modify any given streamline shape in such a way
that the effect of the modification on the pressure dis-
tribution, the lift, and the moment can be readily
determined. The construetion is essentially that used
in deriving the familiar Joukowski airfoils from a circle
(reference 1) although it may be applied to an airfoil
shape to introduce modifications of the outline. The
method is based on the concept of complex numbers
but its application requires no familiarity with them.

By two or more successive applications of the con-
struction to a circle, it is possible to derive shapes of
such diversity as to permit the approximation of nearly
any airfoil of current design. For the airfoil derived
in this way the pressure distribution can be determined
exactly, so that the only error likely to oceur is in the
reproduction of the exact airfoilshape. Any inaccuracy
in this approximation is immediately apparent and can
be made as small as is considered desirable.

MODIFICATION OF AN AIRFOIL

The method consists entirely in applications of a
single construction; desired effects are obt2ined by the
proper choice of & parameter k and of the location of
the axes with respect to the figure to be transformed.
This basic construction applied to an airfoil surface is
demonstrated in figure 1. In order to find the point
zs on the modified airfoil to correspond to 2 point z
on the original airfoil, the vector. 0z is drawn from the

2
origin and the vector Ol‘z— is added to it. The vector

2]
01”:, which will be termed the “reciprocal” vector, is con-

structed with its length equal to * times the reciprocal
of the length of Oz and at an angle —¢ with the z-axis,
where ¢ is the angle made with this axis by Oz. A

point of the modified airfoil, then, is located by the
resultant of the vector Oz and its reciprocal vector.
The construction by which a figure is modified ap-
plies equally well to all its streamlines, altering them
to conform to the distortion. The change in spacing
of the streamlines near the boundary of the figure will
show directly the effect of the transformation on the
velocity in that region because the velocity varies
inversely with the spacing. The factor by which the
elements of length near a point z are changed may be
shown to be the ratio of the length of the diagonal from

y-axis

Original airfoil

FisUre 1.—Construction to determine a point on the modified airfoil.

F3/z to z (the vector z—k*/2) to the vector Oz. Then the
ratio of the velocity at a point z}4£%2 to the velocity
at the corresponding point z of the original figure is
the inverse of this factor.

The problem of determining the pressure distribu-
tion is reduced by Bernoulli’s relation P=P,—pV?/2
to that of finding the distribution of the velocity. If
the velocity distribution over the original figure is
known, the velocity distribution over the modified
figure may then be found by applying the ratio _l%

|"_E’
ab cuch point used in the construction. The vectors
z and 2—Fk?*z have already been used in transforming
these points and are therefore directly measurable.

Strictly speaking, the method as outlined is applica-
ble only to potential flows. It isreasonable to suppose,
however, that the actual velocity distribution over the
modified airfoil may be obtained with good accuracy
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from a distribution experimentally determined for the
original airfoil, provided that: (1) the experimental and
the theoretical distributions do not differ too greatly
and (2) the modification itself does not introduce too
great a change in the distribution.

The requirements of each problem will suggest the
proper choice of the axes and of k. A few general
observations may be helpful in this connection. It is
evident that the origin must be in the neighborhood of

) | originat girfoil

F16URE 2.—~The effect of varylng the parsmeters of the construction.

the section to be modified since the point nearest the

origin is shifted the greatest distance. The direction
in which a point is shifted depends on the inclination of
its vector fo the axes, and the shift may have a relatively
small component normal to the airfoil boundary. If
one axis is roughly parallel to the section of the surface
to be modified, the point of gréatest deviation will
usually be very near the. intersection of the surface
with the other axis. It will therefore be useful to note
that the displacement of a point on either axis is
k*/d, where d is the distance of the origin from the point.
Points on or near the z-axis are shifted outward from
the origin; points near the y-axis are moved inward.
The transformations of figure 2 show the nature of the
modifications to be obtained by various choices of the
axes and of k. Sharp modifications occur when the
airfoil intersects either axis at a distance from the
origin only slightly greater than k.

- by Joukowski.
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It is expected that the method as outlined will be
useful in ascertaining the effect on the velocity distri-
bution of & localized modification of an airfoil. It is
possible, however, to approximate a more extensive
modification to any desired degree of  accuracy by
succeggive applications of the same transformation, the
velocity being calculated at each stage by the rule
already given.

APPROXIMATION OF A GIVEN AIRFOIL

The foregoing discussion is concerned with the
problem of effecting small modifications of existent air-
foils for which the velocity distribution is known. It
is somatimes requlred to predict the theoretical charac-
teristics of an airfoil not derived in this way. In such .
a case; it is customary to use the known flow around a
circle as a starting point. If the transformation
discussed here is applied to a circle, the result is an
oval shape with circular-arc camber, as demonstrated
(See reference 1.) It should be possible
to proceed to modify this figure (or its special form, a
Joukawski airfoil) as was done in the preceding section
to an_experimentally known airfoil. In general, how-
ever, it would require many steps to repreduce an
arbitrary airfoil in this way because modifications of
the shape already approaching an airfoil would, of
necesdity, be small and localized. On the other hand,

| i the procedure were reversed, it would be found that

any airfoil may be derived by a single step from a
figura closely approximating a circle, a figure ‘which
will hereinafter be called the “distorted circle” of the
airfoil, The distorted circle may then be considered
the result of modifying a circle, a result obtained in
the same way as were the slightly modified airfoils of
the preceding section. .

For the first step in this process, the determination

‘of the distorted circle corresponding to the desired

airfoil, reference could be made to Theodorsen and
Garrick (reference 2) or von Kérmén and Burgers
(reference 3), who give exact formulas for the distorted
circle in terms of the airfoil coordinates. A graphical
method based on the simpler transformation that is
being used in this paper makes it possible, however, to
obtain the distorted circle merely by trial.

The entire procedure is illustrated step by step in
figure 3. In order to achieve a considerable simplifica-
tion of the construction, the airfoil is considered in this
figure and in the follomng discussion to have been
drawn, through the midpoints rather than through the
termivals of the vectors z-+k%/z, so that they appear
here as if to half scale.

The axes and the parameter k for the first step ar2
found from the airfoil dimensions according to the
relations given in figure 3(a). The z-axis is made to
pass through the leading and the trailing edges to
reduce to a minimum the distortion that will later have
to be reproduced.

The axes and k having been chosen, the intersections
of the distorted circle with the axes, Xy, Xy, ¥y, and
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(f) Reconstruction of the alrfoll from the cirele, showing the lines needed in comput-
_ing the veloclty distribution.

FiauRE 3.—8teps In the approximation of & given airfoll by the transformation of a clrcle.
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T, ave easily calculated (fig. 3(b)).
then proceeds as follows:

In order to serve as a first approximation of the
distorted circle, a cirele is. drawn to fit the four inter-
scetions with the axes as closely as possible. It should
be remembered that, because this step is a first approxi-
mation, great accuracy is not a consideration. When
the vectors 2z follow this circle, the vectors k%/z, con-
structed as previously described, are found to terminate
in a smaller circle, which is termed for convenience the
“peciprocal” circle. This reciprocal circle may be easily
located from its intersections with the axes (fig. 3 (c¢)).

The construction

2
Vectars Oz and Ok; are then drawn from the origin

to the circle and to the reciprocal circle at equal angles
below and above the x-axis (fig. 3(d)). The midpoint
2.’ of the diagonal z—k2/z connecting the ends of these
vectors will not, in general, fall exactly on the airfoil.
A point of the distorted circle z, is located by adjusting
with dividers the length of Oz, along Oz so that the
diagonal to its reciprocal is bisected by the airfoil.
The point of the airfoil z, at which this bisection occurs
will actually be indistinguishable from the intersection
of the first diagonal with the airfoil; this fact is useful
in making the correction. Because the corrections to

the vectors Oz and Og gre in approximately the same

ratio as the vectors, the decrease in %*/z that corres-
ponds to an increase in the length of Oz may be esti-
mated and the reciprocal relation be maintained by
eye. Any desired degree of accuracy may be obtained
by checking numerically the lengths of the vectors.

The distorted circle obtained in this way must now
bo approximated by applying a transformation of the
form z+%?*z to the circle most nearly approximating it.
For this purpose the circle already drawn for the pre-
ceding step will usually be satisfactory, although it
may have to be shifted slightly to obtain & more con-
venient distribution of the distortion. Depressions
should occur as nearly as possible on opposite sides of
the circlo, with distended portions between them.
(See fig. 3(e).) The z-axis should then be passed
through the distended portions and the y-axis, through
the depressions. Some adjustment will be needed to
satisfy the condition that the segments of the axes cut
off by the circle and the corresponding distortions be
approximately in inverse proportion, that is, that their
product at each intersoction be constant. The param-
oter & for the transformation is then the square root
of this product.

Carrying out the transformation of the circle at
this point serves at once to check the estimated param-

oters or to suggest an adjustment and to provide the

construction lines that will be needed to determine the
velocity distribution. Similarly, the distorted circle
thus obtained from the circle should be reduced to the
desired airfoil.

In figure 3(f) the complete double transformation
and the lines necessary for the computetion of the veloc-
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ity distribution are shown applied to a point of the
circle of figure 3(e).

Oceasionally an airfoil will give rise to a distorted
circle that cannot be obtained by a single modification
of a circle. In such a case an additional transforma-
tion may be applied either to achieve the desired
distortion of the circle or to modify locally an airfoil
that can be derived by two transformations.

VELOCITY DISTRIBUTION OVER AN AIRFOIL DERIVED
FROM A CIRCLE

It is apparent that a large variety of useful airfoil
shapes can be obtained by two or more suceessive appli-
cations to a circle of the transformation 'z-4-%*/z.
(Two typical examples are shown in fig. 4.) The first
transformation primarily determines the genoral outline
of the airfoil. The second transformation reduces the
figure to the dimensions of an airfoil and determines
the nose radius, the thickness, and the camber. It
may be of interest to note that in the first transforma-
tion k is small relative to the radius of the circle; in
the second transformation the ratio of & to the radius
of the cirele is only slightly less than 1.

The method of finding the velocity at a point on an
airfoil derived in this meanner is deduced from the
following considerations:

The velocity at a point z on the circle is given by
the formula

. T
=0T )
V=2V, sin 0+21r7‘

where 7 is the radius of the cirele, V5 is the wind veloe-
ity, and @ is the angle that the radius to the point 2
makes with the direction of the air stream. The circu-
lation I' is determined by the Kutta condition. Then
V,=2V,(sin 8—sin 6y)

where 6 equals the angle between the aw stream and
the radius to zrz., the point of the eirele that {rans-
forms to the trailing edge of the airfoil. This expres-
sion for 17, lends itself readily to graphical evaluation
as a part of the construction; the velocity factor
(sin 6—sin 6) is proportional to the ordinate of the
circle measured from a line drawn through zp, z. and
parallel to the wind velocity V.

The velocity at the corresponding point of the trans-
formed figure has been shown in a preceding section to

be l——%V,. The “stretching factor”
Z2—— k
: z

to be applied again to the velocities over the distorted
circle to transform the flow to that over the airfoil.
A simple procedure is to plot the stretching factor alone
for the first transformation, as a function of the angular
position of the transformed point, with the lengths

z|k, will have

|z| and lz—-g measured from the construction. The

stretching factor for the second transformation could

| then be. applied at convenient points to values of the
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FIGURE 4.—Alrfolls derived by two applications of transformation to eircle. Alrfolls ere shown half scale with respect to clreles.

stretching factor for the first transformation read from
the plot. The resultant stretching factor obtained in
this way can be directly applied to the velocity at
points of the circle to give the velocity distribution
over the airfoil at any angle of attack.

Figure 5 shows & sample pressure distribution ove:
an eirfoil (the NACA 4412 airfoil) approximated by
two transformations of a circle. Comparison is made
with the distribution derived by the theory of reference
2 and with experimental results taken from reference 4.
The theoretical distributions were computed at an
angle of attack of 6.4°, which corresponds to a geomet-
ric angle of attack of 8.5° for the finite-span airfoil of
reference 4.

CONCLUSION

The method of this paper has been found uselul in
determining the effcet of small modifications of airfoil
shapes on the pressure distribution. Tt is apparent
that a family of related shapes can be derived in this
way with greater simplicity than by standard methods
because the effect of the modification alone can be
calculated for each shape. It is also possible to foresee
the manner in which a shape must be modified to
produce a desired change in the pressure distribution.
The method is, in fact, reversible and by it an airfoil

may be designed to have a predetermined pressure

(T 1 1]

———Gragphical method

—— —Anglytical method(ref. £}

x x Experimental points (ref 4)
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F1a URE 5.—Theorvtical and experimental pressure distributions over NACA 4412
alrfoll. a,=0.4°.

distribution, provided that a somewhat similar airfoil
is already known. The modified pressure distributions
obtained in this way have closely checked with ex-
periment.

LaNGLEY MEMORIAL AERONAUTICAL LLABORATORY,
NaTioNaL Apvisory COMMITTEE FOR AERONAUTICS,
Lavarey Fieup, Va., November 12, 1940.



APPENDIX
FORMULAS FOR LIFT AND MOMENT

In the case of an airfoil derived from a circle, the
method of derivation, interpreted in terms of complex
numbers, makes it possible to give concise formulas for
the lift and the moment in terms of the parameters
used in the construction and to locate by simple geo-
metric methods the theoretical acrodynamic center.
The general theory for a transformation of the form

o=zt P+ G M

has been developed by vou Mises (reference 5, ch. VII).
In order to apply the formulas of von Miscs, it is neces-
sary to express the resultant of two successive trans-
formations in a series of the foregoing form.

Let, zy=2-4k*/z express the first transformation, z
being a point on the circle or one of its streamlines
and z,, the corresponding point assoeiated with the
distorted circle. The axes for the second transforma-
tion are described by the complex parameter z;, which
locates the origin, and 8, the angle between the two sets
of axes.

Then, if primes denote thc vectors drawn to the new
origin,

2 =(zp—2y)e™* @)
Substitute
zb=z+k—12
2
Then
’ k? _
Zy =(Z+?- 21)8 14 (3)

which is the point on the distorted circle located with
respect to the axes for the second transformation.
Apply the second transformation io z;’; then

e @

gives the corresponding point associated with the air-

foil. Substitute for z,’ from equation (3). Equation
" (4) then becomes
kletz
— Ry —4 2
< + 21) B+"2""12+k1 ®)

In order to restore the wind velocity V5 to its original
megnitude and direction, it is necessary to return to
the original axes.
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za’ = (za'—zl) e (6)

and the inverse transformation is

2o=2,e%+2 : A
Then L gt
) _ "_1 9" 6“2
2,=2+ 2 +Z’—-—z12-+ Eli (8)

This expression for the complete transformation can be
expanded, by carrying out the division of the last term,
into the series

., | . 2+k12+k2 0218 Lﬂ”i:ﬂzl_l_ o (9)

which is in the form of equation (1), where
e =k’ +kie*

ae=k;’e**z

The formulas for the lift and the moment as given by
Glauert: (reference 5, pp. 84 and 85) may now be applied.
The circulation, and consequently the lift, is unchanged
by the transformation. Thus the lift depends only on
the radius of the original circle.

(10)

L=pV,I'= Sm'p "2 sin 6, (11)

or 4‘R'7"2p" ‘702

of My the moment about 0 (fg. 8), is given by the
imaginary part of the expression (reference 5, p. 84)

m¥ 01" etla—8) 2 _ ] (12)

where the quantities not already defined are as defined
by the figure. Substitution for ¢, from equation (10)
gives. '

TP [2(11 otette—2r2 V72—

Tp l:«:_; (-klz + ke ?e?B) gt —

for expression (12), or
My=2rpV k. sin 2a+k,? sin 2(a+B)]

mVol. i(a—ﬂ)]
— e (13)

—mpVol cos (a—8) (14) L

Since

My=2xpV k2 sin 2a+k? sin 2 (&+ B)
—2rm cos (a—34) sin (a—ay)] (16)

sin 6y for the half-scale airfoil. The value _

T=darVysin (a—ap) s
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FIaTRE 8. —Symbols used in development of lift and moment formalas.

In general, the moment about any point z (see fig. 6)
is given by
A, =2xpV 2k sin 2a+k:? sin 2(a+B)
+2rd cos (a—a) sin (a— )] (17)

or

_ﬂ&r_2=[k12+k52 cos 28+rd cos (¢p+ )] sin 2«

raY
TP Ikt sin 28—rd sin (¢-+ag)] cos 2a
+rd sin (¢— ) (18)

The location of the aerodynamic center (or focus) is
determined by the condition that the moment about
that point be independent of the angle of attack. In
order to satisfy this condition, the coefficients of
cos 2« and of sin 2« in equation (18) must vanish

simultaneously.
Thus .
Y-+ cos 28)=—d cos ($-+a0) (19)
1% sin 26=d sin (s a0) 20)
and

—tan—1_—ks’ sin 28
(¢+ao)—tan -———k12+k22 cos 2B (21)

@=Lk 20 ks cos 26-Hk)

Equations (21) are found to have a simple geometric
representation. If k?/r and k?/r are two sides of a
triangle and (180°—2p) is the angle between them, then
d is the length of the third side and (¢+ep) is the
supplement of the angle opposite k?/r. This triangle
may be used to locate the aerodynamic center directly
on the construction, as shown in figure 7. As in the
preceding illustrations, this airfoil has been drawn to
half scale with respect to the cirele and the distance d
has therefore been bisected. The moment about the
serodynamic center

Aeradynamic

FIGURE 7.—Construction to find the asrodynemie center.

is obtained directly from equation (18). The moment
for the half-scale airfoil is one-quarter of this value.
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